
ScreenPy Documentation
Release 0.2.0

Perry Goy

Feb 18, 2020

Contents:

1 Installation 3

2 Quickstart 5
2.1 screenpy-quickstart . 5

3 File Hierarchy 7
3.1 Features . 7
3.2 Questions . 8
3.3 Tasks . 8
3.4 User Interface . 8

4 Included in ScreenPy 9
4.1 Actors . 9
4.2 Abilities . 11
4.3 Targets . 15
4.4 Actions . 17
4.5 Questions . 28
4.6 Resolutions . 30
4.7 Wait Strategies . 31

5 Debugging 33
5.1 Alternative Method . 34

6 Exceptions 35
6.1 Base . 35
6.2 Ability Exceptions . 35
6.3 Action Exceptions . 35
6.4 Actor Exceptions . 36
6.5 Target Exceptions . 36

7 Additional Context 37

8 Indices and tables 39

Python Module Index 41

Index 43

i

ii

ScreenPy Documentation, Release 0.2.0

ScreenPy provides a solid, SOLID base for writing maintainable test suites following the Screenplay Pattern, popular-
ized by Antony Marcano. It also provides nice test logging through Allure and support for BDD-style natural language
test case writing.

Contents: 1

https://docs.qameta.io/allure/

ScreenPy Documentation, Release 0.2.0

2 Contents:

CHAPTER 1

Installation

To install ScreenPy, run the following command, preferably in a virtual environment:

pip3 install screenpy

This will also install the screenpy-quickstart script and the following dependencies:

1. Selenium

2. PyHamcrest

3. Allure’s Pytest plugin

4. Pytest

3

https://selenium-python.readthedocs.io/
https://pyhamcrest.readthedocs.io/en/latest/
https://docs.qameta.io/allure/
https://docs.pytest.org/en/latest/

ScreenPy Documentation, Release 0.2.0

4 Chapter 1. Installation

CHAPTER 2

Quickstart

2.1 screenpy-quickstart

To quickly set up a Screenplay Pattern test suite using ScreenPy, cd to the folder you will use for your suite and run
this command:

screenpy-quickstart

This will set up user_interface, questions, tasks, and features directories and fill them with a simple
test. For an explanation of each of these directories, see the File Hierarchy page!

5

ScreenPy Documentation, Release 0.2.0

6 Chapter 2. Quickstart

CHAPTER 3

File Hierarchy

The key to a good Screenplay Pattern suite is understanding how the files all fit together. The hierarchy described
herein is one example of how the files can be organized and named. If your team feels strongly that there are better
conventions to follow, renaming the files will not break any of ScreenPy’s functionality.

Here is an example hierarchy:

• suite_root

– features # this is where the actual test files will live

* feature1.py

* . . .

– questions # questions your actors will ask about the site

* question1.py

* . . .

– tasks # groups of actions your actors can perform, with descriptive names

* task1.py

* . . .

– user_interface # files containing locators and/or URLs for each page

* page1.py

* . . .

– requirements.txt # where you list screenpy!

3.1 Features

The feature films! The story arcs! The whole point of the suite! These are the features of your application that you are
testing; this is where all the actual test files go.

7

ScreenPy Documentation, Release 0.2.0

3.2 Questions

Things your actor asks about the application, to perform a thrilling turnabout (test fail) or a cathartic confirmation (test
pass) upon finding the answer. These files are where you will access elements on the page to figure out if your test has
passed.

For more information, see the Questions page!

3.3 Tasks

Tasks are descriptive ways to group one or more actions that your actors will do. A common task is a Login task,
which will contain the actions necessary to log in. There may be many tasks your actors will need to do in your suite.

For more information, see the Tasks section!

3.4 User Interface

These files collect all the locators (built using the Target class) and maybe URLs for the pages of your application.
These probably will not be super interesting files; they’re kind of like the blocking notes for the screenplay.

8 Chapter 3. File Hierarchy

CHAPTER 4

Included in ScreenPy

ScreenPy comes with a lot of the base tools you will need to get started, which should cover the most common use
cases. You’ll be set up in time to make curtain call!

4.1 Actors

Actors are the do-ers in the screenplay. Actors set the scene, perform their hearts out, and then make dramatic asser-
tions that will either see a happy ending or a tragic failure.

More seriously, the actors represent the users of your application, doing the things you’d expect them to do on it (or
things you might not expect them to do). Screenplay Pattern focuses entirely on what your users hope to do on your
site, so your test cases will focus on what the actors do, which includes gaining Abilities, performing Actions, and
asking Questions.

4.1.1 Using Actors

To instantiate a new actor, just give it a name:

from screenpy.actor import Actor, AnActor

Perry = AnActor.named("Perry")

Without any abilities, your actor will be woefully unprepared to begin their performance. To give your actor an ability,
you can do something like:

from selenium.webdriver import Firefox
from screenpy.abilities import BrowseTheWeb

Perry.can(BrowseTheWeb.using(Firefox()))

For convenience, you can also do the same like this
Perry = AnActor.named("Perry").who_can(BrowseTheWeb.using(Firefox()))

9

ScreenPy Documentation, Release 0.2.0

Now, Perry is able to attempt any actions that require the ability to BrowseTheWeb. Attempting actions looks like this:

from screenpy import Target
from screenpy.actions import Click

EXAMPLE_LINK = Target.the("example link").located_by("//a")
Perry.attempts_to(Click.the(EXAMPLE_LINK))

You’ll notice we had to make a quick Target there. We’ll get to Targets later, but a quick summary is that they’re
how you tell the actors where to perform the action.

In the above example, the action knows what ability it requires, and it will ask the actor to find its matching ability to
perform the action. If the actor does not have that ability, the actor will raise an UnableToPerformError.

Now that our actor has performed an action, they are ready to perform a test. Tests are performed with Questions, like
so:

from screenpy.questions import Text
from screenpy.resolutions import ReadsExactly

THE_WELCOME_MESSAGE = Target.the("welcome_message").located_by("span.welcome")
Perry.should_see_the((Text.of(THE_WELCOME_MESSAGE), ReadsExactly("Welcome!"))

That’s the whole flow! Your actor is now ready to exit:

Perry.exits_stage_right()

In summary, actors:

• Are created by naming them using the named() class method.

• Are granted Abilities using the who_can() or can() class methods.

• Perform Actions using their granted Abilities.

• Ask Questions about the state of the application under test.

• Exit gracefully, with a flourish.

4.1.2 Actor Class

class screenpy.actor.Actor(name: str)
Represents an actor, holding their name and abilities. Actors are the performers of your screenplay, they repre-
sent your users as they go about their business on your product.

An actor is meant to be instantiated using its static named() method. A typical invocation might look like:

Perry = Actor.named(“Perry”)

This will create the actor, ready to take on their first role.

ability_to(ability: Any)→ Any
Syntactic sugar for uses_ability_to().

attempts_to(*actions)→ None
Performs a list of actions, one after the other.

Parameters actions – the list of actions to perform.

can(*abilities)→ screenpy.actor.Actor
Syntactic sugar for who_can().

10 Chapter 4. Included in ScreenPy

ScreenPy Documentation, Release 0.2.0

exit()→ None
The actor forgets all of their abilities, ready to assume a new role when their next cue calls them.

exit_stage_left()→ None
Syntactic sugar for exit().

exit_stage_right()→ None
Syntactic sugar for exit().

static named(name: str)→ screenpy.actor.Actor
Names this actor, logs their entrance, and returns the instance.

Parameters name – the name of this new Actor.

Returns Actor

perform(action: Any)→ None
Performs the given action.

Parameters action – the Actions to perform.

should_see(*tests)→ None
Syntactic sugar for should_see_the().

should_see_that(*tests)→ None
Syntactic sugar for should_see_the().

should_see_the(*tests)→ None
Asks a series of questions, asserting that the expected answer resolves.

Parameters tests – tuples of a Questions and a Resolutions.

Raises AssertionError – If the question’s actual answer does not match the expected an-
swer from the Resolutions.

uses_ability_to(ability: Any)→ Any
Finds the ability referenced and returns it, if the actor is able to do it.

Parameters ability – the ability to retrieve.

Returns The requested ability.

Raises |UnableToPerformError| – the actor doesn’t possess the ability.

was_able_to(*actions)→ None
Syntactic sugar for attempts_to().

who_can(*abilities)→ screenpy.actor.Actor
Adds an ability to this actor.

Parameters abilities – The abilities this actor can do.

Returns Actor

4.2 Abilities

Abilities allow your Actor to do things. Actors will leverage their abilities to perform actions that require those
abilities.

4.2. Abilities 11

https://docs.python.org/3/library/exceptions.html#AssertionError

ScreenPy Documentation, Release 0.2.0

4.2.1 Using Abilities

To give an actor an ability, pass it in using the actor’s who_can() or can() methods:

from screenpy import Actor, AnActor
from screenpy.abilities import BrowseTheWeb

Add abilities on instantiation
Perry = AnActor.named("Perry").who_can(BrowseTheWeb.using_firefox())

Or add abilities later
Perry = AnActor.named("Perry")
Perry.can(BrowseTheWeb.using_safari())

Granting an ability to an actor allows them to perform any Actions or ask any Questions that require that ability. If an
action or a question require an ability that the actor does not have, the actor will raise an UnableToPerformError.

4.2.2 Writing New Abilities

There may be other abilities your actors need to possess in order to test your application. You are encouraged to
write your own! The only prescribed method for an ability is the forget method, which will complete any cleanup
required. For an example, see the forget() method of the BrowseTheWeb ability. A base class for Abilities is
provided for convenience: screenpy.abilities.base_ability.BaseAbility

4.2.3 Included Abilities

BrowseTheWeb

class screenpy.abilities.browse_the_web.BrowseTheWeb(browser: sele-
nium.webdriver.remote.webdriver.WebDriver)

The ability to browse the web with a web browser. This ability is meant to be instantiated with its using()
static method, which takes in the WebDriver to use, or one of its other “using” methods. A typical invocation
looks like:

BrowseTheWeb.using(selenium.webdriver.Firefox())

BrowseTheWeb.using_firefox()

This will create the ability that can be passed in to an actor’s who_can() method.

find(locator: Union[Target, Tuple[selenium.webdriver.common.by.By, str]]) → sele-
nium.webdriver.remote.webelement.WebElement

Syntactic sugar for to_find().

find_all(target: Union[Target, Tuple[selenium.webdriver.common.by.By, str]]) → sele-
nium.webdriver.remote.webelement.WebElement

Syntactic sugar for to_find_all().

forget()→ None
Asks the actor to forget how to BrowseTheWeb. This quits the connected browser.

An actor who is exiting will forget all their abilities.

to_find(target: Union[Target, Tuple[selenium.webdriver.common.by.By, str]]) → sele-
nium.webdriver.remote.webelement.WebElement

Locates a single element on the page using the given locator.

Parameters target – the Target or tuple describing the element.

12 Chapter 4. Included in ScreenPy

ScreenPy Documentation, Release 0.2.0

Returns WebElement

Raises |BrowsingError|

to_find_all(target: Union[Target, Tuple[selenium.webdriver.common.by.By, str]]) →
List[selenium.webdriver.remote.webelement.WebElement]

Locates many elements on the page using the given locator.

Parameters target – the Target or tuple describing the elements.

Returns List[WebElement]

to_get(url: str)→ screenpy.abilities.browse_the_web.BrowseTheWeb
Uses the connected browser to visit the specified URL.

This action supports using the BASE_URL environment variable to set a base URL. If you set BASE_URL,
the url passed in to this function will be appended to the end of it. For example, if you have
BASE_URL=http://localhost, then to_get(“/home”) will send your browser to “http://localhost/home”.

If BASE_URL isn’t set, then the passed-in url is assumed to be a fully qualified URL.

Parameters url – the URL to visit.

Returns BrowseTheWeb

to_switch_to(target: Target)→ None
Switches the browser context to the target.

Parameters target – the Target or tuple describing the element to switch to.

to_switch_to_alert()→ selenium.webdriver.common.alert.Alert
Switches to an alert and returns it.

Returns Alert

Raises |BrowsingError| – no alert was present to switch to.

to_switch_to_default()→ None
Switches the browser context back to the default frame.

to_visit(url: str)→ screenpy.abilities.browse_the_web.BrowseTheWeb
Syntactic sugar for to_get().

to_wait_for(target: Union[Target, Tuple[selenium.webdriver.common.by.By,
str]], timeout: int = 20, cond: Callable = <class ’sele-
nium.webdriver.support.expected_conditions.visibility_of_element_located’>)

Waits for the element to fulfill the given condition.

Parameters

• target – the tuple or Target describing the element.

• timeout – how many seconds to wait before raising a TimeoutException. Default is 20.

• cond – the condition to wait for. Default is visibility_of_element_located.

Raises |BrowsingError| – the target did not satisfy the condition in time.

static using(browser: selenium.webdriver.remote.webdriver.WebDriver) →
screenpy.abilities.browse_the_web.BrowseTheWeb

Specifies the driver to use to browse the web. This can be any WebDriver instance, even a remote one.

Parameters browser – the webdriver instance to use.

Returns BrowseTheWeb

4.2. Abilities 13

https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#module-selenium.webdriver.remote.webelement
https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#module-selenium.webdriver.remote.webelement
http://localhost/home
https://selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.alert.html?highlight=alert#selenium.webdriver.common.alert.Alert
https://seleniumhq.github.io/selenium/docs/api/py/api.html

ScreenPy Documentation, Release 0.2.0

static using_android()→ screenpy.abilities.browse_the_web.BrowseTheWeb
Creates an uses a default Remote driver instance to connect to a running Appium server and open Chrome
on Android. Use this if you don’t need to set anything up for your test browser.

Note that Appium requires non-trivial setup to be able to connect to Android emulators. See the Appium
documentation to get started: http://appium.io/docs/en/writing-running-appium/running-tests/

Environment Variables:

APPIUM_HUB_URL: the URL to look for the Appium server. Default is “http://localhost:
4723/wd/hub”

ANDROID_DEVICE_VERSION: the version of the device to put in the desired capabilities.
Default is “10.0”

ANDROID_DEVICE_NAME: the device name to request in the desired capabilities. Default is
“Android Emulator”

Returns BrowseTheWeb

static using_chrome()→ screenpy.abilities.browse_the_web.BrowseTheWeb
Creates and uses a default Chrome Selenium webdriver instance. Use this if you don’t need to set anything
up for your test browser.

Returns BrowseTheWeb

static using_firefox()→ screenpy.abilities.browse_the_web.BrowseTheWeb
Creates and uses a default Firefox Selenium webdriver instance. Use this if you don’t need to set anything
up for your test browser.

Returns BrowseTheWeb

static using_ios()→ screenpy.abilities.browse_the_web.BrowseTheWeb
Creates an uses a default Remote driver instance to connect to a running Appium server and open Safari
on iOS. Use this if you don’t need to set anything up for your test browser.

Note that Appium requires non-trivial setup to be able to connect to iPhone simulators. See the Appium
documentation to get started: http://appium.io/docs/en/writing-running-appium/running-tests/

Environment Variables:

APPIUM_HUB_URL: the URL to look for the Appium server. Default is “http://localhost:
4723/wd/hub”

IOS_DEVICE_VERSION: the version of the device to put in the desired capabilities. Default is
“13.1”

IOS_DEVICE_NAME: the device name to request in the desired capabilities. Default is “iPhone
Simulator”

Returns BrowseTheWeb

static using_safari()→ screenpy.abilities.browse_the_web.BrowseTheWeb
Creates and uses a default Safari Selenium webdriver instance. Use this if you don’t need to set anything
up for your test browser.

Returns BrowseTheWeb

wait_for(locator: Union[Target, Tuple[selenium.webdriver.common.by.By,
str]], timeout: int = 20, cond: Callable = <class ’sele-
nium.webdriver.support.expected_conditions.visibility_of_element_located’>)

Syntactic sugar for to_wait_for().

14 Chapter 4. Included in ScreenPy

http://appium.io/docs/en/writing-running-appium/running-tests/
http://localhost:4723/wd/hub
http://localhost:4723/wd/hub
http://appium.io/docs/en/writing-running-appium/running-tests/
http://localhost:4723/wd/hub
http://localhost:4723/wd/hub

ScreenPy Documentation, Release 0.2.0

AuthenticateWith2FA

class screenpy.abilities.authenticate_with_2fa.AuthenticateWith2FA(otp: py-
otp.totp.TOTP)

The ability to retrieve a one-time password from a two-factor authenticator. This ability is meant to be instan-
tiated with its using_secret() method, which will take in the 2FA secret, or its using() static method,
which takes in an instantiated PyOTP instance. A typical invocation looks like:

AuthenticateWith2FA.using_secret(“KEEPITSECRETKEEPITSAFE”)

AuthenticateWith2FA.using(pyotp_instance)

This will create the ability that can be passed in to an actor’s who_can() method.

forget()→ None
Cleans up the pyotp instance stored in this ability.

to_get_token()→ str
Gets the current two-factor token to use as a one-time password.

Returns str

static using(otp: pyotp.totp.TOTP)→ screenpy.abilities.authenticate_with_2fa.AuthenticateWith2FA
Uses an already-created TOTP instance to provide tokens.

Parameters otp (pyotp.TOTP) – an instance of a TOTP object.

Returns AuthenticateWith2FA

static using_secret(secret: str)→ screenpy.abilities.authenticate_with_2fa.AuthenticateWith2FA
Creates a TOTP instance with the given secret.

Parameters secret – the secret given by the 2FA service. You may need to decode a QR code
to get this secret.

Returns AuthenticateWith2FA

4.3 Targets

Targets are a way to encapsulate a human-readable string along with a CSS selector or xpath locator.

To instantiate a target, you might do something like this:

from screenpy import Target

EXAMPLE_ELEMENT1 = Target.the("first example element").located_by("//div")
EXAMPLE_ELEMENT2 = Target.the("second example element").located_by("span.example")

Let’s break that down a little bit.

The class method the() expects a human-readable string to give the element a log-friendly name. That same class
method returns the newly instantiated Target object, ready to have its located_by() method called.

The located_by() method takes in the actual locator, which can either be XPath or CSS Selector.

Targets are expected to be defined in your user_interface files, and can then be used in your Actions, your Questions,
and your Tasks.

4.3. Targets 15

https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3schools.com/cssref/css_selectors.asp

ScreenPy Documentation, Release 0.2.0

4.3.1 Target Class

class screenpy.target.Target(desc: str)
A class to contain information about an element. This class stores a nice human-readable string describing an
element along with either an XPath or a CSS selector string. It is intended to be instantiated by calling its static
the() method. A typical invocation might look like:

Target.the(“header search bar”).located_by(“div.searchbar”)

It can then be used in Questions, Actions or Tasks to access that element.

all_found_by(the_actor: screenpy.actor.Actor)→ List[selenium.webdriver.remote.webelement.WebElement]
Gets a list of WebElement objects described by the stored locator.

Parameters the_actor (Actor) – The Actor who should look for these elements.

Returns list(WebElement)

found_by(the_actor: screenpy.actor.Actor)→ selenium.webdriver.remote.webelement.WebElement
Gets the WebElement object representing the targeted element.

Parameters the_actor (Actor) – The Actor who should look for this element.

Returns WebElement

get_locator()→ Tuple[selenium.webdriver.common.by.By, str]
Returns the stored locator as a (By, str) tuple.

Returns Tuple(By, str)

Raises |TargetingError| – if no locator was supplied to the target.

located(locator: Tuple[selenium.webdriver.common.by.By, str])→ screenpy.target.Target
Supplies an instantiated target with a locator. This locator is a tuple of the By strategy to use and the
identifying string, e.g.

Target.the(“signout link”).located((By.LINK_TEXT, “Sign Out”))

Parameters locator – the (By, str) tuple to use to find the element.

Returns Target

located_by(locator: str)→ screenpy.target.Target
Supplies an instantiated Target with a locator string, which is either a CSS selector or an XPATH string.
The strategy will be determined before it is stored.

Parameters locator – the string to use as a locator for the element. Can be a CSS selector or
an xpath string.

Returns Target

static the(desc: str)→ screenpy.target.Target
Creates a Target with a description. This method call should be followed up with a call to
located_by().

Parameters desc (str) – The human-readable description for the targeted element. Beginning
with a lower-case letter makes the allure test logs look the nicest.

Returns Target

16 Chapter 4. Included in ScreenPy

https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#module-selenium.webdriver.remote.webelement
https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#module-selenium.webdriver.remote.webelement
https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#module-selenium.webdriver.remote.webelement
https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#module-selenium.webdriver.remote.webelement
https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.by.html
https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.by.html
https://docs.python.org/3/library/stdtypes.html#str

ScreenPy Documentation, Release 0.2.0

4.4 Actions

Actions are the things that an Actor can do, using their Abilities.

4.4.1 Using Actions

Actions can be used pretty much anywhere. They will typically be used to create Tasks or move around in your
Features. Here is an example of using the Click action:

from screenpy.actions import Click

from ..user_interface.homepage import LOGIN_LINK

Perry.attempts_to(Click.on_the(LOGIN_LINK))

Actors will always only attempt to perform an action. They may not actually have the correct Abilities, after all. If an
actor is unable to perform an action or task, they will raise an UnableToPerformError.

4.4.2 Writing New Actions

Occasionally, you might find that the base actions don’t quite cover a unique use case you have for your test suite.
Since Screenplay Pattern is built to be extensible, it is easy and encouraged to create your own custom actions to
achieve what you need! The only requirement for creating more actions is that they have a perform_as method
defined which takes in the actor who will perform the action.

A base class for Actions is provided to ensure the required methods are defined: screenpy.actions.
base_action.BaseAction

Let’s take a look at what an extremely contrived custom action, ChecksTheSpelling, might look like:

actions/checks_the_spelling.py
from screenpy.actions import BaseAction

class ChecksTheSpelling(BaseAction):
@staticmethod
def of_words_in_the(locator):

return ChecksSpelling(locator)

def perform_as(self, the_actor):
the_actor.uses_ability_to(CheckSpelling).to_check()

def __init__(self, locator):
self.locator = locator

ScreenPy attempts to follow a convention of putting all the static methods first, then the perform_as function, and
leaving the dunder methods at the bottom. This way the most important methods are first for someone perusing your
code.

4.4.3 Tasks

Sometimes, your actors might repeat the same series of actions several times. A grouping of common actions can be
abstracted into a Task in your Tasks.

4.4. Actions 17

https://docs.python.org/3/library/msilib.html#features

ScreenPy Documentation, Release 0.2.0

A common task for Screenplay Pattern suites is logging in to your application under test. This login task might look
something like this:

tasks/login.py
import os

from screenpy import Actor
from screenpy.actions import BaseAction, Click, Enter

from ..user_interface.homepage import (
SIGN_ON_LINK,
THE_USERNAME_FIELD,
THE_PASSWORD_FIELD,
LOGIN_BUTTON,

)

class LoginSuccessfully(BaseAction):
"""
Log in to the application successfully.
"""

@staticmethod
def using_credentials(username: str, password: str) -> "LoginSuccessfully":

"""
Supply the credentials for the account.

Args:
username: the username to use.
password: the password to use.

"""
return LoginSuccessfully(username, password)

def perform_as(self, the_actor: Actor) -> None:
"""
Asks the actor to log in to the application.

Args:
the_actor: the actor who will perform this task.

Raises:
UnableToPerformError: the actor does not have the ability to

BrowseTheWeb.
"""
the_actor.attempts_to(

Click.on(SIGN_ON_LINK),
Wait.for_the(THE_USERNAME_FIELD).to_appear(),
Enter.the_text(self.username).into(THE_USERNAME_FIELD),
Enter.the_text(self.password).into(THE_PASSWORD_FIELD),
Click.on_the(LOGIN_BUTTON)

)

def __init__(self, username: str, password: str):
self.username = username
self.password = password

And there you have it! Now all you have to do is ask your actor to attempt to LoginSuccessfully, and you’ve
got the same set of actions everywhere.

18 Chapter 4. Included in ScreenPy

ScreenPy Documentation, Release 0.2.0

Note that tasks, just like actions, are required to have a perform_asmethod defined. You can use the BaseAction
class for tasks as well.

4.4.4 Provided Actions

Open

class screenpy.actions.open.Open(location: Union[str, object])
A very important action; opens the browser! An Open action is expected to be instantiated via its static
browser_on() method. A typical invocation might look like:

Open.browser_on(the_homepage_url)

Open.browser_on(HomepageObject)

If you pass in an object, make sure the object has a url property that can be referenced by this action.

It can then be passed along to the Actor to perform the action.

static browser_on(location: Union[str, object])→ screenpy.actions.open.Open
Creates a new Open action which holds its destined location.

Parameters location – The URL to open when this action is performed, or an object con-
taining a url property that holds the URL to open when this action is performed.

Returns Open

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the supplied actor to perform this Open action, using their ability to browse the web.

Parameters the_actor – The Actor who will perform the action.

Raises |UnableToPerformError| – the actor does not have the ability to
BrowseTheWeb.

static their_browser_on(location: Union[str, object])→ screenpy.actions.open.Open
Syntactic sugar for browser_on().

Click

class screenpy.actions.click.Click(target: screenpy.target.Target)
Clicks on an element! A Click action is expected to be instantiated via its static on() or on_the() methods.
A typical invocation might look like:

Click.on_the(PROFILE_LINK)

It can then be passed along to the Actor to perform the action.

static on(target: screenpy.target.Target)→ screenpy.actions.click.Click
Syntactic sugar for on_the().

static on_the(target: screenpy.target.Target)→ screenpy.actions.click.Click
Creates a new Click action with its crosshairs aimed at the provided target.

Parameters target – The Target describing the element to click.

Returns Click

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to find the element described by the stored target, and then clicks it. May wait for another
target to appear, if then_wait_for() had been called.

4.4. Actions 19

ScreenPy Documentation, Release 0.2.0

Parameters the_actor – the Actor who will perform the action.

Raises

• |DeliveryError| – an exception was raised by Selenium.

• |UnableToPerformError| – the actor does not have the ability to BrowseTheWeb.

then_wait_for(target: screenpy.target.Target)→ screenpy.actions.click.Click
Syntactic sugar for then_wait_for_the().

then_wait_for_the(target: screenpy.target.Target)→ screenpy.actions.click.Click
Supplies a target to wait for after performing the click.

This method has been deprecated as of version 1.0.0. Please use the included Wait action instead. This
method will be removed in version 2.0.0.

Parameters target – The Target describing the element to wait for after performing the
click.

Returns Click

Clear

class screenpy.actions.clear.Clear(target: screenpy.target.Target)
Clears the text from an input field. A Clear action is expected to be instantiated by its static
the_text_from() method. A typical invocation might look like:

Clear.the_text_from(COMMENT_FIELD)

It can then be passed along to the Actor to perform the action.

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to performs the Clear action, clearing the text from the targeted input field using their ability
to browse the web.

Parameters the_actor – The Actor who will perform this action.

Raises |UnableToPerformError| – the actor does not have the ability to
BrowseTheWeb.

static the_text_from(target: screenpy.target.Target)→ screenpy.actions.clear.Clear
Syntactic sugar for the_text_from_the().

static the_text_from_the(target: screenpy.target.Target)→ screenpy.actions.clear.Clear
Creates a new Clear action with the provided text.

Parameters target – the Target from which to clear the text.

Returns Clear

Enter

class screenpy.actions.enter.Enter(text: str, mask: bool = False)
Enters text into an input field. An Enter action is expected to be instantiated by its static the_text() method.
A typical invocation might look like:

Enter.the_text(“Hello world!”).into(COMMENT_FIELD)

It can then be passed along to the Actor to perform the action.

into(target: screenpy.target.Target)→ screenpy.actions.enter.Enter
Supplies the target to enter the text into. This is most likely an input field.

20 Chapter 4. Included in ScreenPy

ScreenPy Documentation, Release 0.2.0

Parameters target – The Target describing the input field.

Returns Enter

into_the(target: screenpy.target.Target)→ screenpy.actions.enter.Enter
Syntactic sugar for into()

on(target: screenpy.target.Target)→ screenpy.actions.enter.Enter
Syntactic sugar for into()

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to perform the Enter action, entering the text into the targeted input field using their ability
to browse the web.

If this Enter object’s then_hit() method was called, it will also hit the supplied keys. Finally, if the
then_wait_for() method was called, it will wait for the supplied target to appear.

Parameters the_actor – the Actor who will perform this action.

Raises

• |DeliveryError| – an exception was raised by Selenium.

• |UnableToActError| – no target was supplied.

• |UnableToPerformError| – the actor does not have the ability to BrowseTheWeb.

static the_keys(text: str)→ screenpy.actions.enter.Enter
Syntactic sugar for the_text().

static the_password(text: str)→ screenpy.actions.enter.Enter
Syntactic sugar for the_secret().

static the_secret(text: str)→ screenpy.actions.enter.Enter
Creates a new Enter action with the provided text, but will mask the text for logging. The text will appear
as “[CENSORED]” in the report. It is expected that the next call will be to the instantiated Enter object’s
into() method.

Parameters text – the text to enter into the target, but it’s a secret.

Returns Enter

static the_text(text: str)→ screenpy.actions.enter.Enter
Creates a new Enter action with the provided text. It is expected that the next call will be to the instantiated
Enter object’s into() method.

Parameters text – the text to enter into the target.

Returns Enter

then_hit(*keys)→ screenpy.actions.enter.Enter
Supplies additional keys to hit after entering the text, for example if the keyboard ENTER key should be
pressed.

Parameters keys – the keys to hit afterwards. These are probably the constants from Sele-
nium’s Keys, but they can be strings if you know the codes.

Returns Enter

then_press(*keys)→ screenpy.actions.enter.Enter
Syntactic sugar for then_hit().

then_wait_for(target: screenpy.target.Target)→ screenpy.actions.enter.Enter
Supplies the target to wait for after entering text (and hitting any additional keys, if this object’s
then_hit() method was called).

4.4. Actions 21

https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.keys.html#module-selenium.webdriver.common.keys

ScreenPy Documentation, Release 0.2.0

This method has been deprecated as of version 1.0.0. Please use the included Wait action instead. This
method will be removed in version 2.0.0.

Parameters target – the Target to wait for after entering text.

Returns Enter

Enter2FAToken

class screenpy.actions.enter_2fa_token.Enter2FAToken(target: screenpy.target.Target)
Enters the current two-factor authentication token into an input field. An Enter2FAToken action is expected to
be instantiated by its static into_the() method. A typical invocation might look like:

Enter2FAToken.into_the(2FA_INPUT_FIELD)

It can then be passed along to the Actor to perform the action.

static into(target: screenpy.target.Target)→ screenpy.actions.enter_2fa_token.Enter2FAToken
Syntactic sugar for into_the()

static into_the(target: screenpy.target.Target)→ screenpy.actions.enter_2fa_token.Enter2FAToken
Provide the input field into which to enter the 2FA token.

Parameters target – the Target describing the input field.

Returns Enter2FAToken

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to perform the Enter2FAToken action, which will get the current token using the actor’s
AuthenticateWith2FA ability.

Parameters the_actor – the Actor who will perform this action.

Raises |UnableToPerformError| – if the actor does not have the abilities to
AuthenticateWith2FA and BrowseTheWeb.

Select

class screenpy.actions.select.Select
Selects an option from a dropdown menu. This is an entry point that will create the correct specific Select action
that will need to be used, depending on how the option needs to be selected. Some examples of invocations:

Select.the_option_named(“January”).from_the(MONTH_DROPDOWN)

Select.the_option_at_index(0).from_the(MONTH_DROPDOWN)

Select.the_option_with_value(“jan”).from_the(MONTH_DROPDOWN)

It can then be passed along to the Actor to perform the action.

static the_option_at_index(index: Union[int, str])→ screenpy.actions.select.SelectByIndex
Instantiate a SelectByIndex class which will select the option at the specified index. This index is 0-based.

Parameters index – the index (0-based) of the option to select.

Returns SelectByIndex

static the_option_named(text: str)→ screenpy.actions.select.SelectByText
Instantiate a SelectByText class which will select the option with the given text.

Parameters text – the text of the option to select.

Returns SelectByText

22 Chapter 4. Included in ScreenPy

ScreenPy Documentation, Release 0.2.0

static the_option_with_value(value: str)→ screenpy.actions.select.SelectByValue
Instantiate a SelectByText class which will select the option with the given text.

Parameters value – the value of the option to select.

Returns SelectByText

class screenpy.actions.select.SelectByText(text: str, target: Op-
tional[screenpy.target.Target] = None)

A specialized Select action that chooses the option by text. This class is meant to be accessed via the Select
action’s static the_option_named() method. A typical invocation might look like:

Select.the_option_named(“January”).from_the(MONTH_DROPDOWN)

It can then be passed along to the Actor to perform the action.

from_(target: screenpy.target.Target)→ screenpy.actions.select.SelectByText
Syntactic sugar for from_the().

from_the(target: screenpy.target.Target)→ screenpy.actions.select.SelectByText
Provides the target to select the option from.

Parameters target – the Target describing the dropdown or multi-select element to select
the option from.

Returns SelectByText

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to attempt to find the dropdown element described by the stored target, then performs the
select action.

Parameters the_actor – The Actor who will perform the action.

Raises

• |DeliveryError| – an exception was raised by Selenium.

• |UnableToActError| – no target was supplied.

• |UnableToPerformError| – the actor does not have the ability to BrowseTheWeb.

class screenpy.actions.select.SelectByIndex(index: Union[int, str], target: Op-
tional[screenpy.target.Target] = None)

A specialized Select action that chooses the option by its index. This class is meant to be accessed via the
Select action’s static the_option_at_index() method. A typical invocation might look like:

Select.the_option_at_index(0).from_the(MONTH_DROPDOWN)

It can then be passed along to the Actor to perform the action.

from_(target: screenpy.target.Target)→ screenpy.actions.select.SelectByIndex
Syntactic sugar for from_the().

from_the(target: screenpy.target.Target)→ screenpy.actions.select.SelectByIndex
Provides the target to select the option from.

Parameters target – The Target describing the dropdown or multi-select element to select
the option from.

Returns SelectByIndex

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to attempt to find the dropdown element described by the stored target, then performs the
select action.

Parameters the_actor – The Actor who will perform the action.

4.4. Actions 23

ScreenPy Documentation, Release 0.2.0

Raises

• |DeliveryError| – an exception was raised by Selenium.

• |UnableToActError| – no target was supplied.

• |UnableToPerformError| – the actor does not have the ability to BrowseTheWeb.

class screenpy.actions.select.SelectByValue(value: Union[int, str], target: Op-
tional[screenpy.target.Target] = None)

A specialized Select action that chooses the option by its value. This class is meant to be accessed via the Select
action’s static the_option_with_value() method. A typical invocation might look like:

Select.the_option_with_value(“jan”).from_the(MONTH_DROPDOWN)

It can then be passed along to the Actor to perform the action.

from_(target: screenpy.target.Target)→ screenpy.actions.select.SelectByValue
Syntactic sugar for from_the().

from_the(target: screenpy.target.Target)→ screenpy.actions.select.SelectByValue
Provides the target to select the option from.

Parameters target – The Target describing the dropdown or multi-select element to select
the option from.

Returns SelectByValue

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to attempt to find the dropdown element described by the stored target, then performs the
select action.

Parameters the_actor – The Actor who will perform the action.

Raises

• |DeliveryError| – an exception was raised by Selenium.

• |UnableToActError| – no target was supplied.

• |UnableToPerformError| – the actor does not have the ability to BrowseTheWeb.

AcceptAlert

class screenpy.actions.accept_alert.AcceptAlert
Accepts an alert. An AcceptAlert action is expected to be instantiated as it is, no static methods for this one.
The only invocation looks like:

AcceptAlert()

It can then be passed along to the Actor to perform the action.

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to perform the AcceptAlert action.

Parameters the_actor – The Actor who will perform this action.

Raises

• |BrowsingError| – no alert was present.

• |UnableToPerformError| – the actor does not have the ability to BrowseTheWeb.

24 Chapter 4. Included in ScreenPy

ScreenPy Documentation, Release 0.2.0

DismissAlert

class screenpy.actions.dismiss_alert.DismissAlert
Dismisses an alert. An DismissAlert action is expected to be instantiated as it is, no static methods for this one.
The only invocation looks like:

DismissAlert()

It can then be passed along to the Actor to perform the action.

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to perform the DismissAlert action.

Parameters the_actor – The Actor who will perform this action.

Raises

• |BrowsingError| – no alert was present.

• |UnableToPerformError| – the actor does not have the ability to BrowseTheWeb.

RespondToThePrompt

class screenpy.actions.respond_to_the_prompt.RespondToThePrompt(text: str)
Responds to a javascript prompt by entering the specified text and accepting the prompt. RespondToThePrompt
is expected to be instantiated using its with_() static method. A typical instantiation might look like:

RespondToThePrompt.with_(“I am big. It’s the pictures that got small.”)

It can then be passed along to the Actor to perform the action.

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to perform the RespondToPrompt action.

Parameters the_actor – The Actor who will perform this action.

Raises

• |BrowsingError| – no alert was present.

• |UnableToPerformError| – the actor does not have the ability to BrowseTheWeb.

static with_(text: str)→ screenpy.actions.respond_to_the_prompt.RespondToThePrompt
Specifies the text to enter into the prompt.

Parameters text – the text to enter.

Returns RespondToTheText

SwitchTo

class screenpy.actions.switch_to.SwitchTo(target: Optional[screenpy.target.Target])
Switches to something, most likely an iframe, or back to default. A SwitchTo action is expected to be instantiated
by its static the() or default() methods, or on its own. A typical invocation might look like:

SwitchTo.the(ORDERS_FRAME)

SwitchTo.default()

It can then be passed along to the Actor to perform the action.

static default()→ screenpy.actions.switch_to.SwitchTo
Switches back to the default frame, the browser window.

4.4. Actions 25

ScreenPy Documentation, Release 0.2.0

Returns SwitchTo

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to perform the SwitchTo action.

Parameters the_actor – The Actor who will perform this action.

Raises |UnableToPerformError| – the actor does not have the ability to
BrowseTheWeb.

static the(target: screenpy.target.Target)→ screenpy.actions.switch_to.SwitchTo
Provide the element to switch to.

Parameters target – the Target describing the element to switch to.

Returns SwitchTo

Wait

class screenpy.actions.wait.Wait(seconds: int = 20, target: Optional[screenpy.target.Target] =
None)

Waits for an element to fulfill a certain condition. A Wait action is expected to be instantiated by its for_()
method, followed by one of its strategies. By default, the to_appear() strategy is used. Wait can also be
instantiated with an integer, like Wait(30), which will set the timeout to be used. Some examples of invocations:

Wait.for_the(LOGIN_FORM)

Wait.for_the(WELCOME_BANNER).to_contain_text(“Welcome!”)

Wait.for(CONFETTI).to_disappear()

Wait(10).seconds_for_the(PARADE_FLOATS).to_appear()

It can then be passed along to the Actor to perform the action.

static for_(target: screenpy.target.Target)→ screenpy.actions.wait.Wait
Creates a new Wait action holding the provided target.

Parameters target – The Target to wait for.

Returns Wait

static for_the(target: screenpy.target.Target)→ screenpy.actions.wait.Wait
Syntactic sugar for for_()

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to perform the Wait action, using the contained strategy and any extra arguments provided.

Parameters the_actor – The Actor who will perform this action.

Raises

• |UnableToActError| – no target was supplied.

• |UnableToPerformError| – the actor does not have the ability to BrowseTheWeb.

seconds_for(target: screenpy.target.Target)→ screenpy.actions.wait.Wait
Sets the target after invoking Wait with the number of seconds you want wait to allow the target to fulfill
the expected condition. For example:

Wait(60).seconds_for(CONFETTI).to_disappear()

This will ask the actor to wait up to 60 seconds for CONFETTI to disappear before throwing an exception.

Parameters target – The Target to wait for.

26 Chapter 4. Included in ScreenPy

ScreenPy Documentation, Release 0.2.0

Returns Wait

seconds_for_the(target: screenpy.target.Target)→ screenpy.actions.wait.Wait
Syntactic sugar for seconds_for()

to_appear()→ screenpy.actions.wait.Wait
Uses Selenium’s “visibility of element located” strategy. This is the default strategy, so calling this is not
strictly necessary.

Returns Wait

to_be_clickable()→ screenpy.actions.wait.Wait
Uses Selenium’s “to be clickable” strategy.

Returns Wait

to_contain_text(text: str)→ screenpy.actions.wait.Wait
Uses Selenium’s “text to be present in element” strategy.

Parameters text – the text to expect to be present.

Returns Wait

to_disappear()→ screenpy.actions.wait.Wait
Uses Selenium’s “invisibility of element located” strategy.

Returns Wait

using(strategy: object)→ screenpy.actions.wait.Wait
Uses the given strategy to wait for the target.

Parameters strategy – the condition to use to wait. This can be one of Selenium’s Expected
Conditions, or it can be a custom Callable that accepts a Tuple[By, str] locator.

Returns Wait

Pause

class screenpy.actions.pause.Pause(number: float)
Pauses the actor’s actions for a set amount of time. This class should only be used when absolutely necessary.
You must call one of the “. . . _because” methods to pass in the reason for your pause; an UnableToActError
will be raised if no reason was given when the actor attempts to perform this action.

A Pause action is expected to be instantiated by its static for_() method, followed by one of the methods that
supply a reason (seconds_because, second_because, or milliseconds_because). A typical invocation might look
like:

Pause.for_(500).milliseconds_because(“the welcome banner needs to hide.”)

It can then be passed along to the Actor to perform the action.

static for_(number: int)→ screenpy.actions.pause.Pause
How many seconds or milliseconds to wait for.

Parameters number – the number of seconds or milliseconds to sleep for.

Returns Pause

milliseconds_because(reason: str)→ screenpy.actions.pause.Pause
Tells the Pause instance to use milliseconds and provides a reason for the pause. Hard waits are the worst
of all wait strategies, so providing a reason will help explain why it was necessary to use this strategy.

Parameters reason – the reason for needing to pause.

4.4. Actions 27

https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.by.html

ScreenPy Documentation, Release 0.2.0

Returns Pause

perform_as(the_actor: screenpy.actor.Actor)→ None
Asks the actor to take their union-mandated break.

Parameters the_actor – the Actor who will perform this action.

Raises |UnableToActError| – no reason was supplied.

second_because(reason: str)→ screenpy.actions.pause.Pause
Syntactic sugar for Pause.seconds_because

seconds_because(reason: str)→ screenpy.actions.pause.Pause
Tells the Pause instance to use seconds and provides a reason for the pause. Hard waits are the worst of all
wait strategies, so providing a reason will help explain why it was necessary to use this strategy.

Parameters reason – the reason for needing to pause.

Returns Pause

Debug

class screenpy.actions.debug.Debug
In long chains of actions, it can be difficult to drop a debugger in the right place. This action can be placed
anywhere in the chain to give you a debugger in the middle of the action chain. This action uses Python 3.7+’s
breakpoint() call if it can, otherwise it will default to pdb.set_trace().

A Debug action is expected to be instantiated in the standard way. A typical instantiation will always look like:

Debug()

It can then be passed along to the Actor to perform the action.

perform_as(the_actor: screenpy.actor.Actor)→ None
Activates a debugger.

Parameters the_actor – the Actor who will perform this action.

4.5 Questions

Questions are asked by an actor about the current state of the page or application. They are the first half (the “actual
value”) of ScreenPy’s test assertions (the other half, Resolutions, is next).

4.5.1 Asking Questions

Typically, you will not be asking a question without an expected answer. This is how you do test assertions in ScreenPy:

from screenpy.questions import Text
from screenpy.resolutions import ReadsExactly

from ..user_interface.homepage import WELCOME_MESSAGE

Perry.should_see_the((Text.of_the(WELCOME_MESSAGE), ReadsExactly("Welcome!")),)

We’ll talk about Resolutions next, but that call to should_see_the() is taking in our question. Behind the curtain,
our actor is investigating the current state of the application (using their ability to BrowseTheWeb) to find out what
the text actually says at the locator described by WELCOME_MESSAGE. They take that answer and compare it to the

28 Chapter 4. Included in ScreenPy

ScreenPy Documentation, Release 0.2.0

expected answer passed in by the resolution. If they match, a comedy! Our test passes. If they do not match, a tragedy!
Our test fails.

4.5.2 Writing New Questions

It is very likely that you may want to write additional questions, and you are encouraged to do so! The only prescribed
method for a question class is an asked_by method that takes in an actor. This method will do the work of getting
the answer to the question. For example, you may want to take a look at the asked_by() method of the Text class.

A base class for Questions is provided to ensure the required methods are defined: screenpy.questions.
base_question.BaseQuestion

4.5.3 Provided Questions

List

class screenpy.questions.list.List(target: screenpy.target.Target)
Asks for a list of elements, viewed by an Actor. This question is meant to be instantiated using its static of()
or of_all() methods. Typical invocations might look like:

List.of(SEARCH_RESULTS)

List.of_all(IMAGES)

It can then be passed along to the Actor to ask the question.

Number

class screenpy.questions.number.Number(target: screenpy.target.Target)
Asks how many of a certain element are on the page, viewed by an Actor. This question is meant to be
instantiated via its static of() method. A typical invocation might look like:

Number.of(SEARCH_RESULTS)

It can then be passed along to the Actor to ask the question.

Text

class screenpy.questions.text.Text(target: screenpy.target.Target, multi: bool = False)
Asks what text appears in an element or elements, viewed by an Actor. This question is meant to be instantiated
using its static of() or of_all() methods. Typical invocations might look like:

Text.of(THE_WELCOME_HEADER)

Text.of_all(SEARCH_RESULTS)

It can then be passed along to the Actor to ask the question.

Selected

class screenpy.questions.selected.Selected(target: screenpy.target.Target, multi: bool =
False)

Answers questions about what options are selected in dropdowns, multi-select fields, etc, viewed by an Actor.
This question is meant to be instantiated using its static option_from or option_from methods. Typical
invocations might look like:

4.5. Questions 29

ScreenPy Documentation, Release 0.2.0

Selected.option_from(THE_STATE_DROPDOWN)

Selected.options_from(INDUSTRIES)

It can then be passed along to the Actor to ask the question.

4.6 Resolutions

Resolutions provide an expected answer to questions. They are the second half of test assertions in ScreenPy: the
“expected value”. (The first half are Questions, if you missed that page.)

4.6.1 Using Resolutions

Like Questions, you probably will not use a resolution directly. You will typically pass a resolution along with a
question into your actor’s should_see_the() method:

from screenpy.questions import Text
from screenpy.resolutions import ReadsExactly

from ..user_interface.homepage import WELCOME_MESSAGE

Perry.should_see_the((Text.of_the(WELCOME_MESSAGE), ReadsExactly("Welcome!")))

In that line of code, ReadsExactly is returning a PyHamcrest matcher. It will be evaluated later as
should_see_the() does its job. If the expected value (“Welcome!”) matches the actual value retrieved by our
question, bravo! Our test passes. If they do not match, boo! Our test fails.

4.6.2 Writing New Resolutions

Resolutions are really just an abstraction barrier for the truly excellent PyHamcrest library. To add your own res-
olutions, create your resolution class by inheriting from the BaseResolution class. All you need to provide in
your resolution is a line class property, which is just a human readable string for the log, and then to define the
__init__ method.

The custom Resolution’s __init__ method will need to set the expected value, and instantiate the PyHamcrest
matcher that your resolution is masking. For several examples, see the documentation of the Provided Resolutions
below.

4.6.3 Provided Resolutions

ContainsTheText

class screenpy.resolutions.ContainsTheText(substring: str)
Matches a substring (e.g. “play” in “screenplay”).

IsEmpty

class screenpy.resolutions.IsEmpty
Matches on an empty collection (e.g. []).

30 Chapter 4. Included in ScreenPy

https://pyhamcrest.readthedocs.io/en/latest/
https://pyhamcrest.readthedocs.io/en/latest/

ScreenPy Documentation, Release 0.2.0

IsEqualTo

class screenpy.resolutions.IsEqualTo(obj: object)
Matches on equality (i.e. a == b).

IsNot

class screenpy.resolutions.IsNot(resolution: Any)
Matches a negated Resolution (e.g. not ReadsExactly(“yes”)).

ReadsExactly

class screenpy.resolutions.ReadsExactly(string: str)
Matches a string exactly (e.g. “screenplay” == “screenplay”).

4.7 Wait Strategies

Automated test scripts are fast. When a test runs quickly, sometimes it can try to act on an element that isn’t quite
ready or hasn’t even been drawn yet. ScreenPy allows you to use each of the prominent waiting strategies.

You can also reference Selenium’s “Waits” documentation for more information.

4.7.1 Explicit Waits

ScreenPy provides a Wait function to wait for certain elements to appear, to be clickable, to contain text, or to
disappear. These are included as a convenience because they are the most common strategies required. If those
strategies aren’t enough, you can also pass in your own strategy. Here are some examples of how this action can be
used:

from screenpy.actions import Wait

waits 20 seconds for the sign in modal to appear
Perry.attempts_to(Wait.for_the(LOGIN_MODAL))

waits 42 seconds for the welcome banner to disappear
Perry.attempts_to(Wait(42).seconds_for(THE_WELCOME_BANNER).to_disappear())

waits 20 seconds for a custom expected condition
Perry.attempts_to(Wait.for_the(PROFILE_ICON).using(appears_in_greyscale))

4.7.2 Implicit Waits

Implicit waiting is handled at the driver level. This is the less preferred method of waiting, but it can be useful in some
situations, and does prevent a lot of Wait actions being littered around your action chains. Before you pass the driver
in, you can set the implicit wait timeout like so:

from selenium.webdriver import Firefox

driver = Firefox()
driver.implicitly_wait(30)

(continues on next page)

4.7. Wait Strategies 31

https://selenium-python.readthedocs.io/waits.html#implicit-waits

ScreenPy Documentation, Release 0.2.0

(continued from previous page)

Perry = AnActor.who_can(BrowseTheWeb.using(driver))

4.7.3 Hard Waits

This method of waiting is discouraged. However, sometimes you just need to pause the script for a few moments,
whether it’s for Debugging or if it’s because of an animation that defies any reasonable method of explicitly waiting
for it to complete.

In these situations, as a last resort, ScreenPy offers the Pause action. Here are some ways to use it:

from screenpy.actions import Pause

Perry.attempts_to(Pause.for_(30).seconds_because("I need to get a new locator."))

Perry.attempts_to(Pause.for_(500).milliseconds_because("the banner animation must
→˓finish."))

32 Chapter 4. Included in ScreenPy

CHAPTER 5

Debugging

Debugging in ScreenPy can sometimes be difficult. If you’re used to stepping through code using a debugger, getting
to the part where your Actor is performing their Actions can be difficult.

To aid in debugging, the Debug action class can be used to drop into a debugger in the middle of any action chain! It
hooks into Python 3.7+’s breakpoint function if it can, so you can modify your preferred debugger and turn debugging
off by manipulating the PYTHONBREAKPOINT environment variable. You can read more about this excellent new
function by perusing PEP553.

As for the action class, here’s an example of an action chain:

given(Perry).was_able_to(
Click.on_the(LOGIN_LINK),
Enter.the_text(USERNAME).into_the(USERNAME_FIELD),
Enter.the_password(PASSWORD).into_the(PASSWORD_FIELD),
Click.on_the(SIGN_IN_BUTTON),
Wait(60).seconds_for_the(WELCOME_BANNER),

)

If we know we have some issue after entering the username and password, but before clicking the sign in button, we
can add a Debug() call there:

given(Perry).was_able_to(
Click.on_the(LOGIN_LINK),
Enter.the_text(USERNAME).into_the(USERNAME_FIELD),
Enter.the_password(PASSWORD).into_the(PASSWORD_FIELD),
Debug(), # gives you a debugger here!
Click.on_the(SIGN_IN_BUTTON),
Wait(60).seconds_for_the(WELCOME_BANNER),

)

Now the test will drop us into either your chosen debugger or pdb. You’ll need to return a couple times to get back
up to the Actor class’s attempts_to() method. From there, you can step through the rest of the actions one at a
time, or dive into one if you need to!

33

https://www.python.org/dev/peps/pep-0553/

ScreenPy Documentation, Release 0.2.0

5.1 Alternative Method

If you just need the actor to hold on a second while you verify the state of the webpage, you can use the Pause action
instead, like so:

given(Perry).was_able_to(
Click.on_the(LOGIN_LINK),
Enter.the_text(USERNAME).into_the(USERNAME_FIELD),
Enter.the_password(PASSWORD).into_the(PASSWORD_FIELD),
Pause.for_(20).seconds_because("I need to see something"), # stops the execution

→˓here for 20 seconds.
Click.on_the(SIGN_IN_BUTTON),
Wait(60).seconds_for_the(WELCOME_BANNER),

)

34 Chapter 5. Debugging

CHAPTER 6

Exceptions

There are several exceptions thrown about in ScreenPy. Mostly they are used to provide extra context when other
exceptions are raised.

6.1 Base

class screenpy.exceptions.ScreenPyError
The base exception for all of ScreenPy.

6.2 Ability Exceptions

class screenpy.exceptions.AbilityError
These errors are raised when an ability fails in some way.

class screenpy.abilities.browse_the_web.BrowsingError
Raised when BrowseTheWeb encounters an error.

6.3 Action Exceptions

class screenpy.exceptions.ActionError
These errors are raised when an action fails.

class screenpy.exceptions.DeliveryError
Raised when an action encounters an error while being performed.

class screenpy.exceptions.UnableToActError
Raised when an action is missing direction.

35

ScreenPy Documentation, Release 0.2.0

6.4 Actor Exceptions

class screenpy.actor.UnableToPerformError
Raised when an actor does not have the ability to perform the action they attempted.

6.5 Target Exceptions

class screenpy.target.TargetingError
Raised when there is an issue preventing target acquisition.

36 Chapter 6. Exceptions

CHAPTER 7

Additional Context

Screenplay Pattern uses composition instead of inheritance to form the test suite. The concept was first formed by
Antony Marcano— frustrated with Page Object Model files growing unreasonably large— under the name the Journey
Pattern.

You can watch Antony’s talk about Screenplay Pattern at SeleniumConf2016, which is the same talk that got me
interested in this pattern!

You can also see some documentation about screenplay pattern from the folks who made SerenityBDD, the library
that ScreenPy is modeled after: The Screenplay Pattern - Serenity/JS Handbook

37

https://www.youtube.com/watch?v=8f8tdZBvAbI
http://serenity-bdd.info/#/documentation
https://serenity-js.org/design/screenplay-pattern.html

ScreenPy Documentation, Release 0.2.0

38 Chapter 7. Additional Context

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

39

ScreenPy Documentation, Release 0.2.0

40 Chapter 8. Indices and tables

Python Module Index

s
screenpy.actions.select, 22
screenpy.questions.list, 29
screenpy.questions.number, 29
screenpy.questions.selected, 29
screenpy.questions.text, 29
screenpy.resolutions, 30
screenpy.target, 16

41

ScreenPy Documentation, Release 0.2.0

42 Python Module Index

Index

A
ability_to() (screenpy.actor.Actor method), 10
AbilityError (class in screenpy.exceptions), 35
AcceptAlert (class in screenpy.actions.accept_alert),

24
ActionError (class in screenpy.exceptions), 35
Actor (class in screenpy.actor), 10
all_found_by() (screenpy.target.Target method), 16
attempts_to() (screenpy.actor.Actor method), 10
AuthenticateWith2FA (class in

screenpy.abilities.authenticate_with_2fa),
15

B
browser_on() (screenpy.actions.open.Open static

method), 19
BrowseTheWeb (class in

screenpy.abilities.browse_the_web), 12
BrowsingError (class in

screenpy.abilities.browse_the_web), 35

C
can() (screenpy.actor.Actor method), 10
Clear (class in screenpy.actions.clear), 20
Click (class in screenpy.actions.click), 19
ContainsTheText (class in screenpy.resolutions), 30

D
Debug (class in screenpy.actions.debug), 28
default() (screenpy.actions.switch_to.SwitchTo static

method), 25
DeliveryError (class in screenpy.exceptions), 35
DismissAlert (class in

screenpy.actions.dismiss_alert), 25

E
Enter (class in screenpy.actions.enter), 20
Enter2FAToken (class in

screenpy.actions.enter_2fa_token), 22

exit() (screenpy.actor.Actor method), 10
exit_stage_left() (screenpy.actor.Actor method),

11
exit_stage_right() (screenpy.actor.Actor

method), 11

F
find() (screenpy.abilities.browse_the_web.BrowseTheWeb

method), 12
find_all() (screenpy.abilities.browse_the_web.BrowseTheWeb

method), 12
for_() (screenpy.actions.pause.Pause static method),

27
for_() (screenpy.actions.wait.Wait static method), 26
for_the() (screenpy.actions.wait.Wait static method),

26
forget() (screenpy.abilities.authenticate_with_2fa.AuthenticateWith2FA

method), 15
forget() (screenpy.abilities.browse_the_web.BrowseTheWeb

method), 12
found_by() (screenpy.target.Target method), 16
from_() (screenpy.actions.select.SelectByIndex

method), 23
from_() (screenpy.actions.select.SelectByText method),

23
from_() (screenpy.actions.select.SelectByValue

method), 24
from_the() (screenpy.actions.select.SelectByIndex

method), 23
from_the() (screenpy.actions.select.SelectByText

method), 23
from_the() (screenpy.actions.select.SelectByValue

method), 24

G
get_locator() (screenpy.target.Target method), 16

I
into() (screenpy.actions.enter.Enter method), 20

43

ScreenPy Documentation, Release 0.2.0

into() (screenpy.actions.enter_2fa_token.Enter2FAToken
static method), 22

into_the() (screenpy.actions.enter.Enter method), 21
into_the() (screenpy.actions.enter_2fa_token.Enter2FAToken

static method), 22
IsEmpty (class in screenpy.resolutions), 30
IsEqualTo (class in screenpy.resolutions), 31
IsNot (class in screenpy.resolutions), 31

L
List (class in screenpy.questions.list), 29
located() (screenpy.target.Target method), 16
located_by() (screenpy.target.Target method), 16

M
milliseconds_because()

(screenpy.actions.pause.Pause method), 27

N
named() (screenpy.actor.Actor static method), 11
Number (class in screenpy.questions.number), 29

O
on() (screenpy.actions.click.Click static method), 19
on() (screenpy.actions.enter.Enter method), 21
on_the() (screenpy.actions.click.Click static method),

19
Open (class in screenpy.actions.open), 19

P
Pause (class in screenpy.actions.pause), 27
perform() (screenpy.actor.Actor method), 11
perform_as() (screenpy.actions.accept_alert.AcceptAlert

method), 24
perform_as() (screenpy.actions.clear.Clear method),

20
perform_as() (screenpy.actions.click.Click method),

19
perform_as() (screenpy.actions.debug.Debug

method), 28
perform_as() (screenpy.actions.dismiss_alert.DismissAlert

method), 25
perform_as() (screenpy.actions.enter.Enter method),

21
perform_as() (screenpy.actions.enter_2fa_token.Enter2FAToken

method), 22
perform_as() (screenpy.actions.open.Open method),

19
perform_as() (screenpy.actions.pause.Pause

method), 28
perform_as() (screenpy.actions.respond_to_the_prompt.RespondToThePrompt

method), 25
perform_as() (screenpy.actions.select.SelectByIndex

method), 23

perform_as() (screenpy.actions.select.SelectByText
method), 23

perform_as() (screenpy.actions.select.SelectByValue
method), 24

perform_as() (screenpy.actions.switch_to.SwitchTo
method), 26

perform_as() (screenpy.actions.wait.Wait method),
26

R
ReadsExactly (class in screenpy.resolutions), 31
RespondToThePrompt (class in

screenpy.actions.respond_to_the_prompt),
25

S
screenpy.actions.select (module), 22
screenpy.questions.list (module), 29
screenpy.questions.number (module), 29
screenpy.questions.selected (module), 29
screenpy.questions.text (module), 29
screenpy.resolutions (module), 30
screenpy.target (module), 16
ScreenPyError (class in screenpy.exceptions), 35
second_because() (screenpy.actions.pause.Pause

method), 28
seconds_because() (screenpy.actions.pause.Pause

method), 28
seconds_for() (screenpy.actions.wait.Wait method),

26
seconds_for_the() (screenpy.actions.wait.Wait

method), 27
Select (class in screenpy.actions.select), 22
SelectByIndex (class in screenpy.actions.select), 23
SelectByText (class in screenpy.actions.select), 23
SelectByValue (class in screenpy.actions.select), 24
Selected (class in screenpy.questions.selected), 29
should_see() (screenpy.actor.Actor method), 11
should_see_that() (screenpy.actor.Actor method),

11
should_see_the() (screenpy.actor.Actor method),

11
SwitchTo (class in screenpy.actions.switch_to), 25

T
Target (class in screenpy.target), 16
TargetingError (class in screenpy.target), 36
Text (class in screenpy.questions.text), 29
the() (screenpy.actions.switch_to.SwitchTo static

method), 26
the() (screenpy.target.Target static method), 16
the_keys() (screenpy.actions.enter.Enter static

method), 21

44 Index

ScreenPy Documentation, Release 0.2.0

the_option_at_index()
(screenpy.actions.select.Select static method),
22

the_option_named()
(screenpy.actions.select.Select static method),
22

the_option_with_value()
(screenpy.actions.select.Select static method),
22

the_password() (screenpy.actions.enter.Enter static
method), 21

the_secret() (screenpy.actions.enter.Enter static
method), 21

the_text() (screenpy.actions.enter.Enter static
method), 21

the_text_from() (screenpy.actions.clear.Clear
static method), 20

the_text_from_the()
(screenpy.actions.clear.Clear static method),
20

their_browser_on() (screenpy.actions.open.Open
static method), 19

then_hit() (screenpy.actions.enter.Enter method), 21
then_press() (screenpy.actions.enter.Enter method),

21
then_wait_for() (screenpy.actions.click.Click

method), 20
then_wait_for() (screenpy.actions.enter.Enter

method), 21
then_wait_for_the() (screenpy.actions.click.Click

method), 20
to_appear() (screenpy.actions.wait.Wait method), 27
to_be_clickable() (screenpy.actions.wait.Wait

method), 27
to_contain_text() (screenpy.actions.wait.Wait

method), 27
to_disappear() (screenpy.actions.wait.Wait

method), 27
to_find() (screenpy.abilities.browse_the_web.BrowseTheWeb

method), 12
to_find_all() (screenpy.abilities.browse_the_web.BrowseTheWeb

method), 13
to_get() (screenpy.abilities.browse_the_web.BrowseTheWeb

method), 13
to_get_token() (screenpy.abilities.authenticate_with_2fa.AuthenticateWith2FA

method), 15
to_switch_to() (screenpy.abilities.browse_the_web.BrowseTheWeb

method), 13
to_switch_to_alert()

(screenpy.abilities.browse_the_web.BrowseTheWeb
method), 13

to_switch_to_default()
(screenpy.abilities.browse_the_web.BrowseTheWeb
method), 13

to_visit() (screenpy.abilities.browse_the_web.BrowseTheWeb
method), 13

to_wait_for() (screenpy.abilities.browse_the_web.BrowseTheWeb
method), 13

U
UnableToActError (class in screenpy.exceptions), 35
UnableToPerformError (class in screenpy.actor),

36
uses_ability_to() (screenpy.actor.Actor method),

11
using() (screenpy.abilities.authenticate_with_2fa.AuthenticateWith2FA

static method), 15
using() (screenpy.abilities.browse_the_web.BrowseTheWeb

static method), 13
using() (screenpy.actions.wait.Wait method), 27
using_android() (screenpy.abilities.browse_the_web.BrowseTheWeb

static method), 13
using_chrome() (screenpy.abilities.browse_the_web.BrowseTheWeb

static method), 14
using_firefox() (screenpy.abilities.browse_the_web.BrowseTheWeb

static method), 14
using_ios() (screenpy.abilities.browse_the_web.BrowseTheWeb

static method), 14
using_safari() (screenpy.abilities.browse_the_web.BrowseTheWeb

static method), 14
using_secret() (screenpy.abilities.authenticate_with_2fa.AuthenticateWith2FA

static method), 15

W
Wait (class in screenpy.actions.wait), 26
wait_for() (screenpy.abilities.browse_the_web.BrowseTheWeb

method), 14
was_able_to() (screenpy.actor.Actor method), 11
who_can() (screenpy.actor.Actor method), 11
with_() (screenpy.actions.respond_to_the_prompt.RespondToThePrompt

static method), 25

Index 45

	Installation
	Quickstart
	screenpy-quickstart

	File Hierarchy
	Features
	Questions
	Tasks
	User Interface

	Included in ScreenPy
	Actors
	Abilities
	Targets
	Actions
	Questions
	Resolutions
	Wait Strategies

	Debugging
	Alternative Method

	Exceptions
	Base
	Ability Exceptions
	Action Exceptions
	Actor Exceptions
	Target Exceptions

	Additional Context
	Indices and tables
	Python Module Index
	Index

